
Class Members

CMSC 240 Software Systems Development

Today
• Constructors

• Enumerations

• Static members

• Operator overloading

• In-class activity

Today
• Constructors

• Enumerations

• Static members

• Operator overloading

• In-class activity

How do we design a class?
We must specify the 3 parts:

1. Member variables: What variables make up this new type?

2. Member functions: What functions can you call on a variable
of this type?

3. Constructor: What happens when you make a new instance of
this type?

September 21, 2023
1. Member variables: What variables make up this new type?

2. Member functions: What functions can you call on a variable of this type?

3. Constructor: What happens when you make a new instance of this type?

Member variables

Member functions

Constructor

Don’t forget to free your memory

Ask a question

Today
• Constructors

• Enumerations

• Static members

• Operator overloading

• In-class activity

Enumerations
• An enum is a very simple user-defined type
• Use them when you want a set of values as symbolic constants

The body of an enumeration is simply a list of enumerators.

Enumerations
• An enum is a very simple user-defined type
• Use them when you want a set of values as symbolic constants

For any other enumerator whose definition does not have an initializer,
the associated value is the value of the previous enumerator plus one

Enumerations
• An enum is a very simple user-defined type
• Use them when you want a set of values as symbolic constants

Enumerations
• An enum is a very simple user-defined type
• Use them when you want a set of values as symbolic constants

The class in enum class means that the
enumerators are in the scope of the enumeration.

To refer to jan we have to say Month::jan

Enumerations
• An enum is a very simple user-defined type
• Use them when you want a set of values as symbolic constants

If we don’t initialize the first enumerator, the count starts with 0.

Here mon is represented as 0 and sun is represented as 6.

When to use an Enumeration

Where could you add an
enumeration to your design?

Today
• Constructors

• Enumerations

• Static members

• Operator overloading

• In-class activity

Static Member Variables
• Static member variables can be accessed on the class itself,

without creating an instance of the class

• Exists only once, regardless of how many instances of the class are
created

• Shared among all instances of the class

• Defined outside the class, typically in a source (.cpp) file, even if it's
declared const (this is required to allocate storage for it)

Error: Can not modify
a const value.

Static Member Functions
• Static member functions can be called on the class itself,

without creating an instance of the class

• It can only access static member variables or other static
member functions directly

• It's often used as a utility function or to interact with static
member variables.

Where could you add static
variables or methods to your
design?

Today
• Constructors

• Enumerations

• Static members

• Operator overloading

• In-class activity

Method Overloading
You can reuse method names if
the parameters in the method
signature are different.

Operator Overloading
• Operator overloading is a feature in C++ that allows you to

redefine the behavior of built-in operators (like +, -, *, etc.) for
user-defined types like classes

• This enables you to use these operators in intuitive ways with
objects of your custom types, making your code more readable
and expressive

Operator Overloading
• Syntax: Operator overloading is achieved by defining special

member functions with the keyword operator followed by the
operator symbol you wish to overload

Where could you use
operator overloading in your
design?

Today
• Constructors

• Enumerations

• Static members

• Operator overloading

• In class activity

Visibility
- private
+ public
protected

