
REST APIs

CMSC 240 Software Systems Development

Today – REST APIs

• Project Introduction

• REST APIs

• In-Class Exercises

Project
Build a custom web service of your own design

1. Create self selected teams of size 2
2. Propose an idea for a web service
3. Create a design document including UML
4. Implement your web service in C++
5. Add a unit testing suite

REST API
• Representational State Transfer
• Communication between client and server “It’s how they talk”
• “RESTful” web service

REST
API

REST API
• Benefits of REST
• Simple
• Standardized
• Scalable
• Stateless
• High Performance

http://urpizza.com/api/toppings

Client
Request

Resource

Server
Response

Request

Create

Read

Update

Delete

POST
GET
PUT
DELETE

HTTP Methods/Operations

What actions (verbs) would you want to perform on your resource?

HTTP Request

Request Body

Request Header

HTTP Method URI: Uniform Resource Identifier HTTP Version

GET Request
http://urpizza.com/api/toppings

Accept: application/json
 User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X)

GET http://urpizza.com/api/toppings HTTP/1.1

HTTP Response

Response Body

Response Header

Response CodeHTTP Version

GET Response
http://urpizza.com/api/toppings

[{”id”:”1”,“topping”:”mozzarella”},
 {”id”:”2”,“topping”:”green pepper”},
 {”id”:”3”,“topping”:”black olive”},
 {”id”:”4”,“topping”:”red onion”},
 {”id”:”5”,“topping”:”mushroom”},
 {”id”:”6”,“topping”:”pepperoni”}]

Content-Length: 32859
 Content-Type: application/json

200 OKHTTP/1.1

JSON (Java Script Object Notation)
• JSON Syntax Rules
• Data is in name/value pairs
• Data is separated by commas
• Curly braces hold objects
• Square brackets hold arrays

HTTP Response Codes For Success
• 2xx success
• 200 OK

• Standard response for successful HTTP requests
• Use for successful GET and PUT requests

• 201 Created
• The request has been fulfilled, resulting in the creation of a new resource
• Use for successful POST requests

• 204 No Content
• The server successfully processed the request, and is not returning any content
• Use for successful DELETE requests

HTTP Response Codes For Client Errors
• 4xx client errors
• 400 Bad Request

• The server cannot or will not process the request due to an apparent client error
e.g., malformed request syntax, size too large, invalid request message

• Use for unsuccessful POST and PUT requests when JSON parsing fails
• 401 Unauthorized

• When authentication is required and has failed or has not yet been provided
• 404 Not Found

• The requested resource could not be found
• Use for unsuccessful GET, PUT, and DELETE requests when resource is not found

• 418 I'm a teapot
• The server refuses to brew coffee because it is, permanently, a teapot

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

GET Request
http://urpizza.com/api/toppings

Accept: application/json
 User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X)

GET http://urpizza.com/api/toppings/2 HTTP/1.1

GET Response
http://urpizza.com/api/toppings

{”id”:”2”,“topping”:”green pepper”}

Content-Length: 859
 Content-Type: application/json

200 OKHTTP/1.1

PUT Request
http://urpizza.com/api/toppings

{”id”:”2”,“topping”:”red pepper”}

Accept: application/json
 User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X)

PUT http://urpizza.com/api/toppings/2 HTTP/1.1

PUT Response
http://urpizza.com/api/toppings

{”id”:”2”,“topping”:”red pepper”}

Content-Length: 859
 Content-Type: application/json

200 OKHTTP/1.1

POST Request
http://urpizza.com/api/toppings

{”id”:”7”,“topping”:”pineapple”}

Accept: application/json
 User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X)

POST http://urpizza.com/api/toppings HTTP/1.1

POST Response
http://urpizza.com/api/toppings

{”id”:”7”,“topping”:”pineapple”}

Content-Length: 859
 Content-Type: application/json

201 CreatedHTTP/1.1

C++ Library for RESTful web service

https://crowcpp.org

https://crowcpp.org/

Hello REST

